Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.

Вниз   Решение


Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

ВверхВниз   Решение


В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

ВверхВниз   Решение


Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

ВверхВниз   Решение


Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.

ВверхВниз   Решение


Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.

S = ab sin$\displaystyle \gamma$,

где a и b — соседние стороны параллелограмма, $ \gamma$ — угол между ними.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE  AB = BC,  ∠ABE + ∠DBC = ∠EBD  и   ∠AEB + ∠BDC = 180°.
Докажите, что ортоцентр треугольника BDE лежит на диагонали AC.

ВверхВниз   Решение


В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?

ВверхВниз   Решение


Автор: Фольклор

Прямоугольник ABCD с площадью 1 сложили по прямой так, что точка C совпала с A.
Докажите, что площадь получившегося пятиугольника меньше ¾.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 61167  (#08.006)

Темы:   [ Тригонометрические уравнения ]
[ Квадратные корни (прочее) ]
Сложность: 4
Классы: 9,10,11

Решите уравнения при 0o < x < 90o:

a) $ \sqrt{13-12\cos x}$ + $ \sqrt{7-4\sqrt3\sin x}$ = 2$ \sqrt{3}$;

б) $ \sqrt{2-2\cos x}$ + $ \sqrt{10-6\cos x}$ = $ \sqrt{10-6\cos 2x}$;

в) $ \sqrt{5-4\cos x}$ + $ \sqrt{13-12\sin
x}$ = $ \sqrt{10}$.
Прислать комментарий     Решение

Задача 61168  (#08.007)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Задача 61169  (#08.008)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:

ctg 30o + ctg 75o = 2.


Прислать комментарий     Решение

Задача 61170  (#08.009)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Многочлены (прочее) ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4
Классы: 10,11

Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

Прислать комментарий     Решение

Задача 61171  (#08.010)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Разложение на множители ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4+
Классы: 10,11

Неотрицательные числа x, y, z удовлетворяют неравенствам  5 ≤ x, y, z ≤ 8.
Какое наибольшее и наименьшее значение может принимать величина  S = 2x²y² + 2x²z² + 2y²z² – x4y4z4 ?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .