Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 1122]
|
|
Сложность: 3 Классы: 7,8,9
|
Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.
|
|
Сложность: 3 Классы: 9,10,11
|
Найдите все x, при которых уравнение x² + y² + z² + 2xyz = 1 (относительно z) имеет действительное решение при любом y.
|
|
Сложность: 3 Классы: 8,9,10
|
В 25 коробках лежат шарики нескольких цветов. Известно, что при любом k (1 ≤ k ≤ 25) в любых k коробках лежат шарики ровно k + 1 различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.
|
|
Сложность: 3 Классы: 7,8,9
|
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 4) будет целым.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 1122]