Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 1122]
|
|
Сложность: 3 Классы: 7,8,9
|
Назовем билет с номером от 000000 до 999999
отличным, если разность некоторых двух соседних цифр его номера равна 5.
Найдите число отличных билетов.
|
|
Сложность: 3 Классы: 6,7,8
|
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Члены Государственной Думы образовали фракции так,
что для любых двух фракций
A и
B (не обязательно различных)
– тоже фракция (через
обозначается множество всех членов Думы, не входящих в
C ).
Докажите, что для любых двух фракций
A и
B A
B –
также фракция.
|
|
Сложность: 3 Классы: 6,7,8
|
Докажите, что числа от 1 до 16 можно записать в строку,
но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел
была квадратом натурального числа.
В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по
одной карте. Вынутые карты в колоду не возвращаются. Каждый раз
перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть.
Докажите, что если Ваня каждый раз будет загадывать масть, карт
которой в колоде осталось не меньше, чем карт любой другой масти,
то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 1122]