Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 1122]
|
|
Сложность: 3 Классы: 10,11
|
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
|
|
Сложность: 3 Классы: 7,8,9
|
Натуральное число n таково, что числа 2n + 1 и 3n + 1 являются квадратами. Может ли при этом число 5n + 3 быть простым?
|
|
Сложность: 3 Классы: 7,8,9
|
Целые числа x, y и z таковы, что (x – y)(y – z)(z – x) = x + y + z. Докажите, что число x + y + z делится на 27.
Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно:
представимых в виде суммы точного квадрата и точного куба или не представимых
в таком виде?
|
|
Сложность: 3 Классы: 7,8,9
|
В числе
A цифры идут в возрастающем порядке (слева направо).
Чему равна сумма цифр числа
9
· A ?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 1122]