ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Остроугольный треугольник разбили медианой на два меньших треугольника. На сторонах AB и BC параллелограмма ABCD выбраны точки K и L соответственно так, что ∠AKD = ∠CLD. В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем? На плоскости дано множество S, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой. На плоскости отмечено несколько точек, причём не все эти точки лежат на одной прямой. Вокруг каждого треугольника с вершинами в отмеченных точках описана окружность. Могут ли центры всех этих окружностей оказаться отмеченными точками? 30 команд участвуют в розыгрыше первенства по футболу. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Найдите все такие пары (a, b) натуральных чисел, что при любом натуральном n число an + bn является точной (n+1)-й степенью.
На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Найдите все пары чисел x,y
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке