Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе.
На каждом ходу Шарик последовательно делает две операции:
1) съедает какую-то котлету вместе со всеми сидящими на ней мухами;
2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух).
Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
а) столько же, сколько уголков;
б) больше, чем уголков?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что $CN = AB$. Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Петя расставляет 500 королей на клетках доски 100×50 так, чтобы они не били друг друга. А Вася – 500 королей на белых клетках (в шахматной раскраске) доски 100×100 так, чтобы они не били друг друга. У кого больше способов это сделать?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]