Страница: 1 2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 8,9,10
|
Саша записывает числа 1, 2, 3, 4, 5 в каком-нибудь порядке, расставляет знаки арифметических операций «+», «−», «×» и скобки и смотрит на результат полученного выражения. Например, он может получить число 8 с помощью выражения (4−3)×(2+5)+1. Может ли он получить число 123?
Формировать числа из нескольких других нельзя (например, из чисел 1 и 2 нельзя составить число 12).
|
|
Сложность: 4 Классы: 8,9,10
|
Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.
|
|
Сложность: 4 Классы: 8,9,10
|
Дано натуральное число n>1. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна n. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше n, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда n — простое число.
Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
|
|
Сложность: 5 Классы: 8,9,10
|
Периметр треугольника ABC равен 1. Окружность ω касается стороны BC, продолжения стороны AB в точке P и продолжения стороны AC в точке Q. Прямая, проходящая через середины AB и AC, пересекает описанную окружность треугольника APQ в точках X и Y. Найдите длину отрезка XY.
|
|
Сложность: 5 Классы: 8,9,10
|
Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
Страница: 1 2 >> [Всего задач: 6]