Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]
Задача
67231
(#8.2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Биссектрисы углов $A$, $B$ и $C$ треугольника $ABC$ вторично пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Точки $A_2$, $B_2$; $C_2$ – середины отрезков $AA_1$, $BB_1$, $CC_1$ соответственно. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
Задача
67232
(#8.3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Высоты параллелограмма больше 1. Обязательно ли в него можно поместить единичный квадрат?
Задача
67233
(#8.4)
|
|
Сложность: 5 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ $O$ – центр описанной окружности, $BM$ – медиана, $BH$ – высота. Окружности $AOB$ и $BHC$ повторно пересекаются в точке $E$, а окружности $AHB$ и $BOC$ – в точке $F$. Докажите, что $ME=MF$.
Задача
67234
(#8.5)
|
|
Сложность: 3 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$?
Задача
67235
(#8.6)
|
|
Сложность: 4 Классы: 8,9,10,11
|
При каких $n$ можно замостить плоскость равными фигурами, ограниченными $n$ дугами окружностей?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]