ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



Задача 67431

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Наглядная геометрия в пространстве ]
Сложность: 4
Классы: 9,10,11

В пространстве расположили конечный набор кругов радиуса $1$. Круги могут пересекаться друг с другом, но не проходят через центры друг друга. В центре каждого круга зажгли точечную лампочку, светящую во все стороны. Могло ли случиться, что любой луч света, выходящий из центра любого круга, упирается в какой-то другой круг?
Прислать комментарий     Решение


Задача 67432

Темы:   [ Оценка + пример ]
[ Числовые таблицы и их свойства ]
Сложность: 4
Классы: 8,9,10,11

В каждой клетке таблицы $N\times N$ записано число. Назовём клетку $C$ хорошей, если в какой-то из клеток, соседних с $C$ по стороне, стоит число на 1 больше, чем в $C$, а в какой-то другой из клеток, соседних с $C$ по стороне, стоит число на 3 больше, чем в $C$. Каково наибольшее возможное количество хороших клеток?
Прислать комментарий     Решение


Задача 67433

Темы:   [ Окружности (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 9,10,11

Даны две равные окружности $\omega_1$ и $\omega_2$ с центрами $O_1$ и $O_2$. На отрезке $O_1O_2$ взяты точки $X$ и $Y$ так, что $O_1Y = O_2X$. Точки $A$ и $B$ лежат на $\omega_1$, и прямая $AB$ проходит через $X$. Точки $C$ и $D$ лежат на $\omega_2$, и прямая $CD$ проходит через $Y$. Докажите, что существует окружность, касающаяся прямых $AO_1$, $BO_1$, $CO_2$ и $DO_2$.

Прислать комментарий     Решение

Задача 67436

Темы:   [ Многочлены (прочее) ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10,11

Автор: Бутырин Б.

Дано натуральное число $n$. Можно ли представить многочлен $x(x-1)\dots(x-n)$ в виде суммы двух кубов многочленов с действительными коэффициентами?
Прислать комментарий     Решение


Задача 67437

Темы:   [ Вписанный угол равен половине центрального ]
[ Биссектриса делит дугу пополам ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 9,10,11

Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .