ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найдите корень уравнения 24-x = 32 .

Вниз   Решение


Автор: Шень А.Х.

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

Вверх   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 368]      



Задача 97925

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Можно ли число 1986 представить в виде суммы шести квадратов нечётных чисел?

Прислать комментарий     Решение

Задача 98666

Темы:   [ Обыкновенные дроби ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7,8

Найдите все несократимые дроби, увеличивающиеся вдвое после увеличения и числителя и знаменателя на 10.

Прислать комментарий     Решение

Задача 107845

Темы:   [ Задачи-шутки ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7,8,9

Найдутся ли натуральные числа x, y и z, удовлетворяющие условию  28x + 30y + 31z = 365?

Прислать комментарий     Решение

Задача 111239

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 7,8,9

Существуют ли натуральные числа m и n, для которых верно равенство:  (–2anbn)m + (3ambm)n = a6b6 ?

Прислать комментарий     Решение

Задача 31348

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 6,7,8

В комнате стоят несколько четырёхногих стульев и трёхногих табуреток. Когда на всех стульях и табуретках сидит по человеку, в комнате всего 39 ног. Сколько в комнате стульев и сколько табуреток?

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .