Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Нарисуйте на плоскости шесть точек так, чтобы они служили вершинами ровно для 17 треугольников.

Вниз   Решение


План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний?

ВверхВниз   Решение


На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы
  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Мария Ивановна покупает 16 шариков для Последнего звонка. В магазине есть шарики трёх цветов: синего, красного и зелёного. Сколько существует вариантов различных покупок 16 шариков, если Мария Ивановна хочет, чтобы шарики каждого цвета составляли не менее четверти от количества всех шариков?

ВверхВниз   Решение


На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.

ВверхВниз   Решение


В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

ВверхВниз   Решение


Основанием прямоугольного параллелепипеда ABCDA1B1C1D1 является квадрат ABCD . Найдите наибольший возможный угол между прямой BD1 и плоскостью BDC1 .

ВверхВниз   Решение


Угол при вершине равнобедренного треугольника равен 20o. Докажите, что боковая сторона больше удвоенного основания, но меньше утроенного.

ВверхВниз   Решение


Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9.
Определите это число.

ВверхВниз   Решение


В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 найдите наибольший возможный угол между прямой AE1 и плоскостью BC1E1F .

ВверхВниз   Решение


Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

ВверхВниз   Решение


Высота правильной четырёхугольной пирамиды вдвое больше диагонали её основания, объём пирамиды равен V . Рассматриваются правильные четырёхугольные призмы, вписанные в пирамиду так, что их боковые рёбра параллельны диагонали основания пирамиды, одна боковая грань принадлежит этому основанию, вершины противоположной боковой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 4:1, считая от вершины; б) наибольшее значение объёма рассматриваемых призм.

ВверхВниз   Решение


В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 133]      



Задача 76420

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Системы алгебраических нелинейных уравнений ]
Сложность: 3+
Классы: 9,10

Составить две прогрессии: арифметическую и геометрическую, каждую из четырёх членов; при этом, если сложить одноимённые члены обеих прогрессий, то должны получиться числа: 27, 27, 39, 87.

Прислать комментарий     Решение

Задача 78477

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Прислать комментарий     Решение


Задача 110093

Темы:   [ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 9,10

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

Прислать комментарий     Решение

Задача 105215

Темы:   [ Арифметическая прогрессия ]
[ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.

Прислать комментарий     Решение

Задача 86119

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .