ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S. Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают. Каждая сторона выпуклого четырёхугольника разделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками (cм. рис.). Докажите, что эти отрезки делят друг друга на три равные части. Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC. |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]
Точки K и M расположены на сторонах AB и BC треугольника ABC, причём BK : KA = 1 : 4, BM : MC = 3 : 2. Прямые MK и AC пересекаются
в точке N.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.
В треугольнике ABC проведены медиана BK, биссектриса BE и
высота AD.
Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке