Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.

Вниз   Решение


M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.

ВверхВниз   Решение


В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что A не является точным квадратом.

ВверхВниз   Решение


Имеется m точек, некоторые из которых соединены отрезками так, что каждая соединена с l точками. Какие значения может принимать l?

ВверхВниз   Решение


Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов?

ВверхВниз   Решение


Сторона треугольника равна   ,   углы, прилежащие к ней, равны 75° и 60°.
Найдите отрезок, соединяющий основания высот, проведённых из вершин этих углов.

ВверхВниз   Решение


Пусть c – длина гипотенузы, – длина биссектрисы одного из острых углов прямоугольного треугольника. Найдите катеты.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 243]      



Задача 65872

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Докажите, что ортоцентры шести закрашенных треугольников лежат на одной окружности.

Прислать комментарий     Решение

Задача 66233

Темы:   [ Ортоцентр и ортотреугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ ГМТ - прямая или отрезок ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

В остроугольном треугольнике ABC  AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.

Прислать комментарий     Решение

Задача 66238

Темы:   [ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Периметр треугольника ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10

Автор: Соколов А.

Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.

Прислать комментарий     Решение

Задача 66240

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 9,10

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Прислать комментарий     Решение

Задача 66261

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки подобия ]
[ Перенос помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 9,10

Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что  AH = AXA  и  H ≠ XA.  Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 243]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .