ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Натуральные числа M и K отличаются перестановкой цифр.
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC. Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра. |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 449]
Четырёхугольник ABCD вписан в окружность. Продолжение стороны
AB за точку B пересекается с продолжением стороны DC за точку
C в точке E. Найдите угол BAD, если AB = 2,
BD = 2
В выпуклом четырехугольнике ABCD диагонали AC и BD равны соответственно a и b. Точки E, F, G и H являются соответственно серединами сторон AB, BC, CD и DA. Площадь четырёхугольника EFGH равна S. Найдите диагонали EG и HF четырёхугольника EFGH.
Окружность, вписанная в треугольник ABC, касается стороны AB в
точке M, при этом AM = 1, BM = 4. Найдите CM, если известно, что
В треугольнике ABC биссектриса угла BAC пересекает сторону BC в точке M. Известно, что AB = BC = 2AC, AM = 4. Найдите площадь треугольника ABC.
В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке