ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Трапеция ABCD вписана в окружность w (AD || BC). Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1402]
Докажите, что сумма расстояний от точки, взятой
произвольно внутри правильного треугольника, до его сторон
постоянна (и равна высоте треугольника).
Докажите, что длина биссектрисы AD треугольника ABC
равна
Внутри треугольника ABC взята точка O; прямые AO, BO
и CO пересекают его стороны в точках A1, B1 и C1. Докажите, что:
Даны (2n - 1)-угольник
A1...A2n - 1 и точка O.
Прямые AkO и
An + k - 1An + k пересекаются в точке Bk.
Докажите, что произведение отношений
An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.
Докажите, что площадь правильного восьмиугольника
равна произведению длин наибольшей и наименьшей его диагоналей.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1402]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке