ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что существуют числа, не менее чем 100 способами представимые в виде суммы 2001 слагаемого, каждое из которых является 2000-й степенью целого числа. Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать. Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра. Пусть a, b и c — комплексные числа, лежащие на единичной окружности с
центром в нуле. Докажите, что комплексное число
|
Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 831]
В треугольнике ABC на стороне AB взята точка L, причём
AL = 1, BL = 3, а на стороне BC взята точка K, делящая эту сторону в отношении
В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L.
Дана трапеция ABCD, в которой BC = a, AD = b. Параллельно основаниям BC и AD проведена прямая, пересекающая сторону AB в точке P, диагональ AC в точке L, диагональ BD в точке R и сторону CD в точке Q. Известно, что PL = LR. Найдите PQ.
На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.
К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырёхугольник ABCD описанный тогда и только тогда, когда окружности касаются.
Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке