Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.

Вниз   Решение


Окружность, диаметр которой равен $ \sqrt{10}$, проходит через соседние вершины A и B прямоугольника ABCD. Длина касательной, проведённой из точки C к окружности, равна 3, AB = 1. Найдите все возможные значения, которые может принимать длина стороны BC.

ВверхВниз   Решение


Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.

ВверхВниз   Решение


В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.

Вверх   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 540]      



Задача 111371

Темы:   [ Касающиеся сферы ]
[ Сфера, вписанная в трехгранный угол ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде апофема равна стороне основания. Внутри пирамиды расположены два шара: шар радиуса r касается всех боковых граней; шар радиуса 2r касается основания и двух смежных боковых граней; оба шара касаются друг друга внешним образом. Найдите апофему этой пирамиды.
Прислать комментарий     Решение


Задача 111381

Темы:   [ Площадь сечения ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD высота равна диагонали основания ABCD . Через вершину A параллельно прямой BD проведена плоскость, касающаяся вписанного в пирамиду шара. Найдите отношение площади сечения к площади основания пирамиды.
Прислать комментарий     Решение


Задача 111415

Темы:   [ Отношение объемов ]
[ Ряды Фурье ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Объём правильной четырёхугольной пирамиды SABCD равен V . Высота SP пирамиды является ребром правильного тетраэдра SPQR , плоскость грани PQR которого перпендикулярна ребру SC . Найдите объём общей части этих пирамид.
Прислать комментарий     Решение


Задача 111416

Темы:   [ Отношение объемов ]
[ Правильная призма ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Точки A , B , C , D , E и F – вершины нижнего основания правильной шестиугольной призмы, точки M , N , P , Q , R и S – середины сторон верхнего основания, точки O и O1 – соответственно центры нижнего и верхнего оснований. Найдите объём общей части пирамид O1ABCDEF и OMNPQRS , если объём призмы равен V .
Прислать комментарий     Решение


Задача 111417

Темы:   [ Отношение объемов ]
[ Ряды Фурье ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Высота SO правильной четырёхугольной пирамиды SABCD образует с боковым ребром угол α , объём этой пирамиды равен V . Вершина второй правильной четырёхугольной пирмиды находится в точке S , центр основания – в точке C , а одна из вершин основания лежит на прямой SO . Найдите объём общей части этих пирамид.
Прислать комментарий     Решение


Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .