ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В основании призмы ABCDABCD₁ лежит параллелограмм ABCD, AB = 8, а ∠BAD = π/3. Острые углы AAB и AAD равны между
собой, а угол между ребром AA и плоскостью основания призмы равен arcsin 
³⁄₇
. Все грани призмы касаются некоторой сферы.
Найдите ребро AD и угол между плоскостями AAB и ABC, а также расстояние от точки A до центра сферы.

Вниз   Решение


Ванна заполняется холодной водой за 6 минут 40 секунд, горячей – за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?

ВверхВниз   Решение


Развертка боковой поверхности цилиндра есть квадрат со стороной 2 . Найдите объём цилиндра.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 64]      



Задача 87106

Темы:   [ Неравенства с площадями ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 8,9

Докажите, что площадь любой грани тетраэдра меньше суммы площадей трёх остальных его граней.
Прислать комментарий     Решение


Задача 64340

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Площадь и ортогональная проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4-
Классы: 10,11

Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?

Прислать комментарий     Решение

Задача 64861

Темы:   [ Тетраэдр (прочее) ]
[ Двугранный угол ]
[ Площадь и ортогональная проекция ]
[ Проектирование помогает решить задачу ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 10,11

Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.

Прислать комментарий     Решение

Задача 110439

Темы:   [ Прямоугольные параллелепипеды ]
[ Площадь сечения ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Диагонали прямоугольного параллелепипеда ABCDA1B1C1D1 , вписанного в сферу радиуса R , наклонены к плоскости основания под углом 45o . Найдите площадь сечения этого параллелепипеда плоскостью, которая проходит через диагональ AC1 , параллельна диагонали основания BD и образует с диагональю BD1 угол, равный arcsin .
Прислать комментарий     Решение


Задача 110440

Темы:   [ Прямоугольные параллелепипеды ]
[ Площадь сечения ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Диагонали прямоугольного параллелепипеда ABCDA1B1C1D1 , вписанного в сферу радиуса R , наклонены к плоскости основания под углом 30o . Найдите площадь сечения этого параллелепипеда плоскостью, которая проходит через диагональ AC1 , параллельна диагонали основания BD и образует с диагональю BD1 угол, равный arcsin .
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .