|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Задача Иосифа Флавия. n человек выстраиваются по кругу и нумеруются числами от 1 до n. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если n = 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного n будем обозначать через J(n) номер последнего оставшегося человека. Докажите, что а) J(2n) = 2J(n) - 1; б) J(2n + 1) = 2J(n) + 1; в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]
Хорды AB и AC равны между собой. Образованный ими вписанный в окружность угол равен 30o. Найдите отношение площади той части круга, которая заключена в этом угле, к площади всего круга.
На основании равностороннего треугольника как на диаметре построена полуокружность, рассекающая треугольник на две части. Сторона треугольника равна a. Найдите площадь той части треугольника, которая лежит вне круга.
Основание AC равнобедренного треугольника ABC является
хордой окружности. Эта окружность касается прямых AB и BC в
точках A и C соответственно. Известно, что
Прямая, проходящая через точки A и B окружности, рассекает её на две дуги. Длины этих дуг относятся как 1:11. В каком отношении хорда AB делит площадь круга, ограниченного данной окружностью?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|