ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6. Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
|
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.
Пусть a, b, c — стороны произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ac)
Пусть h1 и h2 — высоты треугольника, r — радиус
вписанной окружности. Докажите, что
Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке