ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадрат со стороной 1, внутренние стенки которого зеркальны. Из вершины квадрата был пущен луч света, который 1000 раз отразился от стенок, после чего попал в (возможно, другую) вершину квадрата. Какой минимальный путь мог при этом пройти луч света?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]      



Задача 66956

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия:

– Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$.

– Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку.

Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .

Прислать комментарий     Решение

Задача 67377

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Точка Микеля ]
[ Гомотетия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$. Прямые, проходящие через точку $A$ параллельно $BI$, $CI$ пересекают серединный перпендикуляр к $AI$ в точках $S$, $T$ соответственно. Прямые $BT$ и $CS$ пересекаются в точке $Y$, а точка $A^*$ такова, что $BICA^*$ параллелограмм. Докажите, что середина отрезка $YA^*$ лежит на вневписанной окружности, касающейся стороны $BC$.
Прислать комментарий     Решение


Задача 56959

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 8,9,10

Высоты треугольника ABC пересекаются в точке H.
а) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек.
б) Докажите, что прямые Эйлера треугольников  ABC, HBC, AHC и ABH пересекаются в одной точке.
в) Докажите, что центры описанных окружностей треугольников  ABC, HBC, AHC и ABH образуют четырехугольник, симметричный четырехугольнику HABC.
Прислать комментарий     Решение


Задача 56962

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что прямая Эйлера треугольника ABC параллельна стороне BC тогда и только тогда, когда  tgBtgC = 3.
Прислать комментарий     Решение


Задача 56963

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что отрезок, высекаемый на стороне AB остроугольного треугольника ABC окружностью девяти точек, виден из ее центра под углом  2|$ \angle$A - $ \angle$B|.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .