ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

Вниз   Решение


Внутри параллелограмма ABCD выбрана точка O, причём  ∠OAD = ∠OCD.  Докажите, что  ∠OBC = ∠ODC.

ВверхВниз   Решение


Основанием прямой призмы служит ромб с острым углом α . Большая диагональ призмы равна d и составляет с плоскостью основания угол β . Найдите объём призмы.

ВверхВниз   Решение


Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось.

ВверхВниз   Решение


Автор: Шень А.Х.

Полоска 1×10 разбита на единичные квадраты. В квадраты записывают числа 1, 2, ..., 10. Сначала в один какой-нибудь квадрат записывают число 1, затем число 2 записывают в один из соседних квадратов, затем число 3 – в один из соседних с уже занятыми и т. д. (произвольными являются выбор первого квадрата и выбор соседа на каждом шагу). Сколькими способами это можно проделать?

ВверхВниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


У деда Мороза в мешке бесконечное число конфет, занумерованных натуральными числами. За минуту до Нового года он начинает дарить детям конфеты. Сначала он дарит детям конфету с номером 1. За полминуты до Нового года он дарит 2 конфеты с номерами 2 и 3, а конфету с номером 1 отбирает, за 15 секунд до Нового года он дарит 4 конфеты с номерами 4, 5, 6, 7, а 2 конфеты с номерами 2 и 3 отбирает, и т.д., за 1/2n долю минуты до Нового года дед Мороз дарит 2n конфет с номерами от 2n до 2n+1-1 и отбирает 2n-1 конфет с номерами от 2n-1 до 2n-1. Сколько конфет будет у деда Мороза и у детей в момент встречи Нового года?

ВверхВниз   Решение


а) На рисунке слева изображены шесть точек, которые лежат по три на четырёх прямых. Докажите, что можно 24 разными способами отобразить это множество из шести точек на себя так, чтобы каждые три точки, лежащие на одной прямой, отобразились в три точки, лежащие на одной прямой.

б) На рисунке справа девять точек лежат по три на девяти прямых, причём через каждую точку проходит по три таких прямых. Эти девять точек и девять прямых образуют знаменитую конфигурацию Паскаля. Сколькими способами можно множество наших девяти точек отобразить на себя так, чтобы каждая тройка точек, лежащая на одной из девяти наших прямых, отобразилась на тройку точек, которая тоже лежит на некоторой прямой из нашей конфигурации?

в) Тот же вопрос для конфигурации Дезарга (из десяти точек и десяти прямых), изображённой на нижнем рисунке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]      



Задача 107609

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Отношение площадей подобных треугольников ]
Сложность: 4-
Классы: 8,9,10

Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

Прислать комментарий     Решение

Задача 57004

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Взаимное расположение двух окружностей ]
[ Применение тригонометрических формул (геометрия) ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Углы треугольника ABC удовлетворяют соотношению  sin²A + sin²B + sin²C = 1.
Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.

Прислать комментарий     Решение

Задача 67359

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 4
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.
Прислать комментарий     Решение


Задача 108021

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия: построения и геометрические места точек ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

Прислать комментарий     Решение

Задача 108487

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Теорема синусов ]
[ Вспомогательная окружность ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .