ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?

Вниз   Решение


Существует ли кусочно-линейная функция f, определённая на отрезке  [–1, 1]  (включая концы), для которой  f(f(x))= – x  при всех x?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)

ВверхВниз   Решение


В прямоугольном параллелепипеде АВСDA'B'C'D'  АВ = ВС = а,  AA' = b.  Его ортогонально спроектировали на некоторую плоскость, содержащую ребро CD. Найдите наибольшее значение площади проекции.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 285]      



Задача 52554

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольник ABC вписана окружность. Пусть x — расстояние от вершины A до касания окружности со стороной AB, BC = a. Докажите, что x = p - a, где p — полупериметр треугольника.

Прислать комментарий     Решение


Задача 53571

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные многоугольники ]
Сложность: 3+
Классы: 8,9

Стороны пятиугольника в порядке обхода равны 5, 6, 7, 8 и 9. Стороны этого пятиугольника касаются одной окружности. На какие отрезки точка касания со стороной, равной 5, делит эту сторону?

Прислать комментарий     Решение


Задача 53986

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Окружность касается стороны BC треугольника ABC в точке M и продолжений двух других сторон. Докажите, что прямая AM делит периметр треугольника пополам.

Прислать комментарий     Решение


Задача 55483

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Окружность касается стороны BC треугольника ABC в точке M, а продолжений сторон AB и AC — в точках P и Q соответственно. Вписанная окружность треугольника ABC касается стороны BC в точке K, а стороны AB — в точке L. Докажите, что:

а) отрезок AP равен полупериметру p треугольника ABC;

б) BM = CK;

в) BC = PL.

Прислать комментарий     Решение


Задача 67336

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ точка $M$ – середина меньшей дуги $BC$ описанной окружности. Окружность $\omega$ касается сторон $AB$, $AC$ в точках $P$, $Q$ соответственно и проходит через точку $M$. Докажите,что $BP+CQ=PQ$.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 285]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .