Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 75]
|
|
Сложность: 5 Классы: 9,10,11
|
Для каких $k$ можно закрасить на белой клетчатой плоскости несколько клеток (конечное число, большее нуля) в черный цвет так, чтобы на любой клетчатой вертикали, горизонтали и диагонали либо было ровно $k$ черных клеток, либо вовсе не было черных клеток?
|
|
Сложность: 5 Классы: 9,10,11
|
а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.
б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).
|
|
Сложность: 5 Классы: 8,9,10
|
В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку красивой, если в соседних с ней по стороне клетках стоит чётное число фишек.
Может ли ровно одна клетка доски быть красивой?
|
|
Сложность: 5 Классы: 8,9,10
|
Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки.
Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.
|
|
Сложность: 3 Классы: 10,11
|
ABCDE — правильный пятиугольник.
Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно
ли пятиугольниками, равными AB'CDE, замостить плоскость?
Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 75]