Страница:
<< 148 149 150 151
152 153 154 >> [Всего задач: 829]
На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что A1C1 || AC.
Окружность, вписанная в прямоугольный треугольник ABC (∠B = 90°), касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. A2, C2 – точки, симметричные точке B1 относительно прямых BC, AB соответственно. Докажите, что прямые A1A2, C1C2 пересекаются на медиане треугольника ABC.
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что DE || AC. Точки P и Q на меньшей дуге AC окружности ω таковы, что DP || EQ. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что ∠XBY + ∠PBQ = 180°.
|
|
Сложность: 4- Классы: 8,9,10
|
В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности.
Докажите, что прямые C0I и A1B1 пересекаются на высоте CH.
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC провели чевианы AA', BB' и CC', которые пересекаются в точке P. Описанная окружность треугольника PA'B' пересекает прямые AC и BC в точках M и N соответственно, а описанные окружности треугольников PC'B' и PA'C' повторно пересекают AC и BC соответственно в точках K и L. Проведём через середины отрезков MN и KL прямую c. Прямые a и b определяются аналогично. Докажите, что прямые a, b и c пересекаются в одной точке.
Страница:
<< 148 149 150 151
152 153 154 >> [Всего задач: 829]