Страница:
<< 160 161 162 163
164 165 166 >> [Всего задач: 829]
Даны трапеция ABCD и перпендикулярная её основаниям AD и BC прямая l. По l движется точка X. Перпендикуляры, опущенные из A на BX и из D на CX пересекаются в точке Y. Найдите ГМТ Y.
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого
пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей
вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми.
Доказать, что полученные четыре прямые пересекаются в одной точке.
На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые
lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в
одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
Через точку пересечения высот остроугольного треугольника ABC
проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
Страница:
<< 160 161 162 163
164 165 166 >> [Всего задач: 829]