ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 207]      



Задача 65650

Темы:   [ Выпуклые тела ]
[ Призма (прочее) ]
[ Проектирование помогает решить задачу ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 9,10,11

Автор: Мухин Д.Г.

В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?

Прислать комментарий     Решение

Задача 65716

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9,10

Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

Прислать комментарий     Решение

Задача 108106

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

Треугольник ABC с острым углом  ∠A = α  вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B.

Прислать комментарий     Решение

Задача 66257

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

Прислать комментарий     Решение

Задача 108004

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .