Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 402]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
Через точку
X, лежащую внутри параллелограмма, проведены прямые, параллельные его сторонам. Тогда
два образовавшихся при этом параллелограмма с единственной общей вершиной
X равновелики тогда и
только тогда, когда точка
X лежит на диагонали параллелограмма.
Стороны AB, BC, CD и DA четырёхугольника ABCD равны соответственно сторонам A'B', B'C', C'D' и D'A' четырёхугольника A'B'C'D', причём известно, что AB || CD и B'C' || D'A'. Докажите, что оба четырёхугольника – параллелограммы.
Отрезки AB и CD лежат на двух сторонах угла BOD (A лежит между O и B, C – между O и D). Через середины отрезков AD и BC проведена прямая, пересекающая стороны угла в точках M и N (M, A и B лежат на одной стороне угла; N, C и D – на другой).
Докажите, что
OM : ON = AB : CD.
Диагонали параллелограмма ABCD пересекаются в точке O.
Описанная окружность треугольника AOB касается прямой BC.
Докажите, что описанная окружность треугольника BOC касается прямой CD.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 402]