Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 460]
В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.
В треугольнике ABC проведены биссектриса BD угла ABC и
биссектриса AF угла BAC (точка D лежит на стороне AC,
а точка F — на стороне BC). Найдите отношение площадей
треугольников ABC и CDF, если известно, что AB = 6,
BC = 4 и AC = 3.
Дана трапеция ABCD. Параллельно её основаниям проведена прямая, пересекающая боковые стороны AB и CD соответственно в точках P и Q, а диагонали AC и BD соответственно в точках L и R. Диагонали AC и BD пересекаются в точке O. Известно, что BC = a, AD = b, а площади треугольников BOC и LOR равны. Найдите PQ, если точка L лежит между точками A и O.
В треугольнике ABC медиана AD и биссектриса BE перпендикулярны и пересекаются в точке F. Известно, что SDEF = 5. Найдите SABC.
В треугольнике ABC на стороне AB взята точка K, причём
AK : BK = 1 : 2, а на стороне BC взята точка L, причём CL : BL = 2 : 1. Q – точка пересечения прямых AL и CK. Найдите площадь треугольника ABC, если известно, что SBQC = 1.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 460]