Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 464]
В треугольнике ABC медиана AD и биссектриса BE перпендикулярны и пересекаются в точке F. Известно, что SDEF = 5. Найдите SABC.
В треугольнике ABC на стороне AB взята точка K, причём
AK : BK = 1 : 2, а на стороне BC взята точка L, причём CL : BL = 2 : 1. Q – точка пересечения прямых AL и CK. Найдите площадь треугольника ABC, если известно, что SBQC = 1.
Из внешней точки A проведены к кругу касательная AB и
секущая ACD. Найдите площадь треугольника CBD, если
AC : AB = 2 : 3
и площадь треугольника ABC равна 20.
Пусть E, F, G – такие точки на сторонах соответственно AB,
BC, CA треугольника ABC, для которых AE : EB = BF : FC = CG : GA = k : 1, где 0 < k < 1. Найдите отношение площади треугольника, образованного прямыми AF, BG и CE, к площади треугольника ABC.
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 464]