Страница:
<< 130 131 132 133
134 135 136 >> [Всего задач: 1221]
[Метод Ньютона и числа Фибоначчи]
|
|
Сложность: 4 Классы: 10,11
|
Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если
а) x0 = 1; б) x0 = 0?
К каким числам будут сходиться эти последовательности?
Опишите разложения чисел xn в цепные дроби.
[Метод Лобачевского и числа Люка]
|
|
Сложность: 4 Классы: 10,11
|
Постройте последовательность полиномов, которая получается, если метод
Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
Решите систему
y2 = 4x3 + x – 4,
z2 = 4y3 + y – 4,
x2 = 4z3 + z – 4.
|
|
Сложность: 4 Классы: 8,9,10
|
Все клетки квадратной таблицы 100×100 пронумерованы в некотором порядке числами от 1 до 10000. Петя закрашивает клетки по следующим правилам. Вначале он закрашивает k клеток по своему усмотрению. Далее каждым ходом Петя может закрасить одну еще не закрашенную клетку с номером a, если для неё выполнено хотя бы одно из двух условий: либо в одной строке с ней есть уже закрашенная клетка с номером меньшим, чем a; либо в одном столбце с ней есть уже закрашенная клетка с номером большим, чем a. При каком наименьшем k независимо от исходной нумерации Петя за несколько ходов сможет закрасить все клетки таблицы?
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)
Страница:
<< 130 131 132 133
134 135 136 >> [Всего задач: 1221]