ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 277]      



Задача 61013

 [Теорема о рациональных корнях многочлена]
Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (p, q) = 1  и  p/q  – рациональный корень многочлена  P(x) = anxn + ... + a1x + a0  с целыми коэффициентами, то
  а)  a0 делится на p;
  б)  an делится на q.

Прислать комментарий     Решение

Задача 66023

Темы:   [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9,10,11

Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число  1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.

Прислать комментарий     Решение

Задача 66741

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Предел последовательности, сходимость ]
[ НОД и НОК. Взаимная простота ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа $a$ и $b$ таковы, что  $a^{n+1} + b^{n+1}$  делится на  $a^n+b^n$  для бесконечного множества различных натуральных $n$. Обязательно ли тогда  $a = b$?

Прислать комментарий     Решение

Задача 73687

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и  a > 1.
Докажите, что если  am + bm  делится на  an + bn,  то m делится на n.

Прислать комментарий     Решение

Задача 76543

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  ...,  n + 9  есть хотя бы одно, взаимно простое с остальными девятью.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .