Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 277]
|
[Теорема о рациональных корнях многочлена]
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если (p, q) = 1 и p/q – рациональный корень многочлена P(x) = anxn + ... + a1x + a0 с целыми коэффициентами, то
а) a0 делится на p;
б) an делится на q.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число 1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Натуральные числа $a$ и $b$ таковы, что $a^{n+1} + b^{n+1}$ делится на $a^n+b^n$ для бесконечного множества различных натуральных $n$. Обязательно ли тогда $a = b$?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и a > 1.
Докажите, что если am + bm делится на an + bn, то m делится на n.
|
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, ..., n + 9 есть хотя бы одно, взаимно простое с остальными девятью.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 277]