ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 512]      



Задача 111448

Темы:   [ Площадь трапеции ]
[ Вспомогательные подобные треугольники ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

В трапеции основания равны 84 и 42, а боковые стороны – 39 и 45. Через точку пересечения диагоналей параллельно основаниям проведена прямая.
Найдите площади получившихся трапеций.

Прислать комментарий     Решение

Задача 115586

Темы:   [ Площадь трапеции ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого.

Прислать комментарий     Решение

Задача 115610

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Точка O – центр окружности, вписанной в треугольник ABC. На сторонах AC и BC выбрали соответственно точки M и K так, что  BK·AB = BO²  и  AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 115668

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD, диагонали которого пересекаются в точке O, равны между собой углы BAC и CBD, а также углы BCA и CDB. Докажите, что касательные, проведённые из точек B и C к описанной окружности треугольника AOD, равны.

Прислать комментарий     Решение

Задача 116094

Темы:   [ Свойства инверсии ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Точки X' и Y' – образы точек X и Y при инверсии относительно окружности с центром O радиуса R, причём точки X и Y отличны от O.
Докажите, что  X'Y' = XY· .

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .