ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Вниз   Решение


Две окружности пересекаются в точках M и K. Через M и K проведены прямые AB и CD соответственно, пересекающие первую окружность в точках A и C, вторую в точках B и D. Докажите, что  AC || BD.

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, из которой две данные окружности были бы видны под данными углами.

ВверхВниз   Решение


Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

ВверхВниз   Решение


Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

ВверхВниз   Решение


Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

ВверхВниз   Решение


Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.

ВверхВниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

ВверхВниз   Решение


Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.

ВверхВниз   Решение


Докажите, что если  ctg($ \alpha$/2) = (b + c)/a, то треугольник прямоугольный.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 58275

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 8,9

Замостите обычную шахматную доску плитками, изображенными на рис.


Прислать комментарий     Решение

Задача 88099

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6,7

Двадцать восемь косточек домино можно разными способами выложить в виде прямоугольника 8×7 клеток. На рис. 1-4 приведены четыре варианта расположения цифр в прямоугольниках. Можете ли вы расположить косточки в каждом из этих вариантов?

Прислать комментарий     Решение

Задача 88100

Темы:   [ Замощения костями домино и плитками ]
[ Ребусы ]
Сложность: 2
Классы: 5,6,7

Весь комплект косточек домино, кроме 0-0, уложили так, как изображено на рисунке. Разным буквам соответствуют разные цифры, одинаковым  — одинаковые. Сумма очков в каждой строке равна 24. Попробуйте восстановить цифры.

Прислать комментарий     Решение

Задача 102965

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6

У Джузеппе есть лист фанеры, размером 22×15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3×5. Как это сделать?
Прислать комментарий     Решение


Задача 103885

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 6,7

В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .