ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



Задача 79294

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Найти все действительные решения уравнения с четырьмя неизвестными:   x² + y² + z² + t² = x(y + z + t).

Прислать комментарий     Решение

Задача 108970

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Доказательство тождеств. Преобразования выражений ]
[ Модуль числа (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что выражение

+

равно 2, если 1<= a <= 2 , и равно 2 , если a>2 .
Прислать комментарий     Решение

Задача 65590

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Петя записал несколько алгебраических выражений, возвёл каждое из них в квадрат и сложил результаты.
Могло ли у него в итоге получиться выражение  x² + y² + z² + 3y + 4x + xz + 1?

Прислать комментарий     Решение

Задача 105187

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Квадратный трехчлен (прочее) ]
[ Перенос помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что любой квадратный трёхчлен можно представить в виде суммы двух квадратных трёхчленов с нулевыми дискриминантами.

Прислать комментарий     Решение

Задача 110162

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Неравенства с модулями ]
[ Иррациональные неравенства ]
Сложность: 4-
Классы: 9,10,11

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .