ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что каждое целое число A представимо в виде
A = a0 + 2a1 + 22a2 +...+ 2nan,
где каждое из чисел ak = 0,
1 или -1 и
akak + 1 = 0 для всех
0 Треугольники ABC и A1B1C1 – равнобедренные прямоугольные (стороны AB и A1B1 – гипотенузы). Известно, что C1 лежит на BC, B1 лежит на AB, а A1 лежит на AC. Докажите, что AA1 = 2CC1. Докажите, что если n – чётное совершенное число, то оно имеет вид n = 2k–1(2k – 1), и p = 2k – 1 – простое число Мерсенна. В выпуклом четырёхугольнике ABCD известно, что ∠A + ∠D = 120° и AB = BC = CD. В треугольнике ABC медианы AA' , BB' и CC' продлили до пересечения с описанной окружностью в точках A0 , B0 и C0 соответственно. Известно, что точка M пересечения медиан треугольника ABC делит отрезок AA0 пополам. Докажите, что треугольник A0B0C0 – равнобедренный. Окружность, вписанная в равнобедренную трапецию, делит её боковую сторону на отрезки, равные 4 и 9. Найдите площадь трапеции.
Множество Кантора. Отрезок числовой оси от 0 до 1 покрашен в зеленый
цвет. Затем его средняя часть — интервал (1/3;2/3)
перекрашивается в красный цвет, потом средняя часть каждого из
оставшихся зелеными отрезков тоже перекрашивается в красный цвет,
с оставшимися зелеными отрезками проделывается та же операция и
так до бесконечности. Точки, оставшиеся зелеными, образуют
множество Кантора.
В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AD < AB < AA1. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R. |
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что AG = AB.
Четырёхугольник ABCD, в котором AB = BC и AD = CD, вписан в окружность. Точка M лежит на меньшей дуге CD этой окружности. Прямые BM и CD пересекаются в точке P, а прямые AM и BD – в точке Q. Докажите, что PQ || AC.
В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что $CN = AB$. Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.
Треугольники ABC и A1B1C1 – равнобедренные прямоугольные (стороны AB и A1B1 – гипотенузы). Известно, что C1 лежит на BC, B1 лежит на AB, а A1 лежит на AC. Докажите, что AA1 = 2CC1.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке