ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]      



Задача 108852

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Высота правильной четырёхугольной пирамиды вдвое больше диагонали её основания, объём пирамиды равен V . Рассматриваются правильные четырёхугольные призмы, вписанные в пирамиду так, что их боковые рёбра параллельны диагонали основания пирамиды, одна боковая грань принадлежит этому основанию, вершины противоположной боковой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 4:1, считая от вершины; б) наибольшее значение объёма рассматриваемых призм.
Прислать комментарий     Решение


Задача 108853

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

Найдите наибольший возможный угол между плоскостью боковой грани и не принадлежащим ей боковым ребром правильной четырёхугольной пирамиды.
Прислать комментарий     Решение


Задача 108854

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Прямоугольные параллелепипеды ]
Сложность: 4
Классы: 8,9

Основанием прямоугольного параллелепипеда ABCDA1B1C1D1 является квадрат ABCD . Найдите наибольший возможный угол между прямой BD1 и плоскостью BDC1 .
Прислать комментарий     Решение


Задача 108855

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .
Прислать комментарий     Решение


Задача 108856

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 найдите наибольший возможный угол между прямой AE1 и плоскостью BC1E1F .
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .