Страница:
<< 91 92 93 94 95
96 97 >> [Всего задач: 484]
|
|
Сложность: 5+ Классы: 9,10,11
|
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает
n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (
n+1)
2 попыток?
С помощью циркуля и линейки на данной прямой MN постройте точку,
из которой данный отрезок AB был бы виден под данным углом.
|
|
Сложность: 4 Классы: 8,9,10
|
Даны три точки
A,B,C . Где на прямой
AC нужно выбрать точку
M , чтобы сумма радиусов окружностей, описанных около
треугольников
ABM и
CBM , была наименьшей?
Пусть X – такая точка внутри треугольника ABC, что XA·BC = XB·AC = XC·AB; I1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 9,10
|
Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.
Страница:
<< 91 92 93 94 95
96 97 >> [Всего задач: 484]