ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников? Правильный многоугольник A1...An вписан в окружность радиуса R с центром O, X — произвольная точка. Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Точка O расположена в сечении BDD'B' прямоугольного параллелепипеда
ABCDA'B'C'D' размером 4× 6× 9
так, что Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра. Докажите, что точка пересечения диагоналей описанного
четырехугольника совпадает с точкой пересечения диагоналей
четырехугольника, вершинами которого служат точки касания сторон
исходного четырехугольника с вписанной окружностью.
|
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 538]
В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана
сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4.
Точка E выбрана на ребре SC , причём SE=
В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана
сфера. Сторона основания пирамиды равна 8, а высота пирамиды равна 3.
Точка M – середина ребра SD , а точка K является ортогональной
проекцией точки M на плоскость ABCD . Через точку M проведена
касательная к сфере, пересекающая плоскость ASC в точке N , причём
Все ребра треугольной пирамиды ABCD касаются некоторого шара.
Три отрезка, соединяющие середины скрещивающихся рёбер AB и CD ,
AC и BD , AD и BC , равны между собой,
В треугольной пирамиде ABCD известно, что AB
Четыре шара радиусов 1, 1, 1 и 2 попарно касаются друг друга внешним образом. Найдите радиус сферы, касающейся внешним образом всех этих шаров.
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 538]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке