Страница:
<< 12 13 14 15 16 17
18 >> [Всего задач: 88]
|
|
Сложность: 3+ Классы: 8,9,10
|
Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.).
Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.
На плоскости нарисован правильный шестиугольник, длина стороны которого равна 1. При помощи одной только линейки постройте отрезок, длина которого равна
|
|
Сложность: 4 Классы: 8,9,10
|
Можно ли на плоскости расположить конечное число точек таким образом, чтобы у
каждой точки было бы ровно три ближайших к ней точки?
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.
|
|
Сложность: 4 Классы: 7,8,9
|
В одном из узлов шестиугольника со стороной
n , разбитого на правильные
треугольники
(см. рис.) , стоит фишка. Двое играющих по очереди
передвигают ее в один из соседних узлов, причем запрещается ходить в узел,
в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода.
Кто выигрывает при правильной игре?
Страница:
<< 12 13 14 15 16 17
18 >> [Всего задач: 88]