Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 424]
|
|
|
Сложность: 4- Классы: 10,11
|
У натурального числа n есть такие два различных делителя а и b, что (а – 1)(b + 2) = n – 2.
Докажите, что число 2n является квадратом натурального числа.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся 1000 – m чисел найдутся два, из которых одно делится на другое.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто
одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно
делится на другое.
|
|
|
Сложность: 4- Классы: 7,8,9,10
|
Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число.
Докажите, что сумма длин всех перегородок делится на 4.
Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 424]