Страница:
<< 97 98 99 100 101
102 103 >> [Всего задач: 512]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.
|
|
Сложность: 4- Классы: 9,10
|
В остроугольном треугольнике ABC AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.
|
|
Сложность: 4- Классы: 9,10,11
|
На стороне BC параллелограмма ABCD (∠A < 90°) отмечена точка T так, что треугольник ATD – остроугольный. Пусть O1, O2 и O3 – центры описанных окружностей треугольников ABT,
DAT и CDT соответственно (см. рисунок).
Докажите, что ортоцентр треугольника
O1O2O3 лежит на прямой
AD.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На стороне AB треугольника ABC взяты такие точки X,
Y, что AX = BY. Прямые CX и CY вторично пересекают описанную окружность треугольника в точках U и V. Докажите, что все прямые UV проходят через одну точку.
Страница:
<< 97 98 99 100 101
102 103 >> [Всего задач: 512]