ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 330]      



Задача 55780

Темы:   [ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

В четырёхугольнике ABCD стороны AB и CD равны, причём лучи AB и DC пересекаются в точке O. Докажите, что прямая, проходящая через середины диагоналей, перпендикулярна биссектрисе угла AOD.

Прислать комментарий     Решение


Задача 115900

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Белухов Н.

Дан правильный 17-угольник A1... A17. Докажите, что треугольники, образованные прямыми A1A4, A2A10, A13A14 и A2A3, A4A6, A14A15, равны.

Прислать комментарий     Решение

Задача 108195

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 6-
Классы: 8,9,10,11

Точки A2 , B2 и C2 – середины высот AA1 , BB1 и CC1 остроугольного треугольника ABC . Найдите сумму углов B2A1C2 , C2B1A2 и A2C1B2 .
Прислать комментарий     Решение


Задача 53432

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, проходящая через середины боковых сторон равнобедренного треугольника, параллельна основанию.

Прислать комментарий     Решение

Задача 54667

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Медианы BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что  AMB1C1.  Докажите, что треугольник ABC равнобедренный.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .