ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 330]      



Задача 53701

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите радиус описанной около треугольника окружности.

Прислать комментарий     Решение


Задача 54350

Темы:   [ Площадь круга, сектора и сегмента ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Площадь треугольника ABC равна 1, AC = 2BC, точка K — середина стороны AC. Окружность с центром в точке K пересекает сторону AB в точках M и N, при этом AM = MN = NB. Найдите площадь части треугольника ABC, заключённой внутри круга.

Прислать комментарий     Решение


Задача 54351

Темы:   [ Площадь круга, сектора и сегмента ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Площадь треугольника ABC равна 1, $ \angle$A = arctg$ {\frac{3}{4}}$, точка O — середина стороны AC. Окружность с центром в точке O касается стороны BC и пересекает сторону AB в точках M и N, при этом AM = NB. Найдите площадь части треугольника ABC, заключённой внутри круга.

Прислать комментарий     Решение


Задача 55188

Темы:   [ Неравенство треугольника ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Докажите, что расстояние между серединами диагоналей выпуклого четырёхугольника не меньше модуля полуразности пары его противоположных сторон.

Прислать комментарий     Решение


Задача 53477

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Композиция центральных симметрий ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4+
Классы: 8,9,10

С помощью циркуля и линейки постройте пятиугольник по серединам его сторон.

Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .