ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1221]      



Задача 115461

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Дан такой набор из 2009 чисел, что если каждое число в наборе заменить на сумму остальных чисел, то получится тот же набор.
Найдите произведение всех чисел набора.

Прислать комментарий     Решение

Задача 115983

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

На длинной скамейке сидели мальчик и девочка. Затем по одному пришли ещё 20 детей, и каждый садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. В итоге оказалось, что мальчики и девочки на скамейке чередуются. Можно ли наверняка сказать, сколько отважных среди детей на скамейке?

Прислать комментарий     Решение

Задача 116410

Темы:   [ Процессы и операции ]
[ Формулы сокращенного умножения (прочее) ]
[ Задачи на максимум и минимум ]
Сложность: 3+
Классы: 8,9

На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?

Прислать комментарий     Решение

Задача 116539

Темы:   [ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?

Прислать комментарий     Решение

Задача 116545

Темы:   [ Процессы и операции ]
[ Свойства симметрий и осей симметрии ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Шмаров В.

Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их A, B и C, после чего на плоскости отмечалась точка D, симметричная A относительно серединного перпендикуляра к BC. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .