ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В параллелограмме ABCD угол C — острый, сторона AB
равна 3, сторона BC равна 6. Из вершины C опущен
перпендикуляр CE на продолжение стороны AB. Точка E, основание
перпендикуляра CE, соединена отрезком прямой с точкой F,
серединой стороны AD. Известно, что угол AEF равен
Площадь сечения конуса плоскостью, проходящей через вершину конуса под углом 30o к его оси, равна площади осевого сечения. Найдите угол при вершине осевого сечения конуса.
В равнобедренном треугольнике высоты, опущенные на основание и боковую сторону, равны соответственно m и n. Найдите стороны треугольника.
В угол с вершиной C вписана окружность ω. Рассматриваются окружности, проходящие через C, касающиеся ω внешним образом и пересекающие стороны угла в точках A и B. Докажите, что периметры всех треугольников ABC равны. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1282]
Биссектрисы внутренних углов треугольника продолжены до точек пересечения с описанной около треугольника окружностью, отличных от вершин исходного треугольника. В результате попарного соединения этих точек получился новый треугольник с углами 45o, 60o и 75o. Найдите отношение площадей исходного и нового треугольников.
Пусть точки A , B , C лежат на окружности, а прямая b касается этой окружности в точке B . Из точки P , лежащей
на прямой b , опущены перпендикуляры PA1 и PC1 на прямые AB и BC соответственно (точки A1 и C1 лежат на
отрезках AB и BC ). Докажите, что A1C1
Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
В дугу AB окружности вписана ломаная AMB из двух отрезков
(AM > MB).
Через вершины A и C треугольника ABC проведена окружность K, центр которой лежит на описанной окружности треугольника ABC. Окружность K пересекает продолжение стороны BA за точку A в точке M. Найдите угол C, если MA : AB = 2 : 5, а ∠B = arcsin 3/5.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке