Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 420]
|
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)
|
|
|
Сложность: 4- Классы: 10,11
|
Целые ненулевые числа a1, a2, ..., an таковы, что равенство
выполнено при всех целых значениях
x, входящих в область определения дроби, стоящей в левой части.
a) Докажите, что число
n чётно.
б) При каком наименьшем
n такие числа существуют?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) степени 2003 с действительными
коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная
последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0,
P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все
числа в последовательности a1, a2, ... различны.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие попарно различные натуральные числа m, n, p, q, что m + n = p + q и
Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 420]