ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 53608

Темы:   [ Описанные четырехугольники ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4+
Классы: 8,9

Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда ED + BF = DF + BE.

Прислать комментарий     Решение


Задача 65226

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC на сторонах AC, BC и AB отметили точки D, E и F соответственно, так, что  AD = AB,  EC = DC,  BF = BE.  После этого стёрли всё, кроме точек E, F и D. Восстановите треугольник ABC.

Прислать комментарий     Решение

Задача 66322

Темы:   [ Вписанные и описанные окружности ]
[ Покрытия ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9

Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

Прислать комментарий     Решение

Задача 64799

Темы:   [ Необычные построения (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10

Таня вырезала из клетчатой бумаги треугольник, изображённый на рисунке. Через некоторое время линии сетки выцвели. Сможет ли Таня их восстановить, не пользуясь никакими инструментами, а только перегибая треугольник? (Длины сторон треугольника Таня помнит.)

Прислать комментарий     Решение

Задача 115734

Темы:   [ ГМТ - прямая или отрезок ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Имеются две параллельные прямые p1 и p2. Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках:
  а) точками пересечения высот;
  б) точками пересечения медиан;
  в) центрами описанных окружностей.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .