ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны две точки A и B и окружность S . С помощью циркуля и линейки постройте окружность, проходящую через точки A и B и касающуюся окружности S .
Правильный треугольник ABC со стороной, равной 3, вписан
в окружность. Точка D лежит на окружности, причём хорда
AD равна
Три отрезка, не лежащие в одной плоскости, пересекаются в одной точке и делятся ею пополам. Докажите, что существуют ровно два тетраэдра, в которых эти отрезки соединяют середины противоположных рёбер. Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны. |
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 329]
Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.
На плоскости даны две концентрические окружности с центром в точке A . Пусть B — произвольная точка одной из этих окружностей, C — другой. Для каждого треугольника ABC рассмотрим две окружности одинакового радиуса, касающиеся друг друга в точке K , причем одна окружность касается прямой AB в точке B , а другая — прямой AC в точке C . Найдите ГМТ K .
Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.
Равные окружности S1 и S2 касаются окружности S
внутренним образом в точках A1 и A2. Произвольная
точка C окружности S соединена отрезками с точками A1
и A2. Эти отрезки пересекают S1 и S2 в точках B1 и B2.
Докажите, что
A1A2| B1B2.
В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 329]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке