Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 211]
Высота прямоугольного треугольника, опущенная на гипотенузу, делит этот треугольник на два треугольника. Расстояние между центрами вписанных окружностей этих треугольников равно 1. Найдите радиус вписанной окружности исходного треугольника.
Даны три точки A, B, C. С помощью циркуля и линейки постройте
три окружности, попарно касающиеся в этих точках.
|
|
Сложность: 3+ Классы: 10,11
|
Пусть a, b, c – стороны треугольника, p – его
полупериметр, а r и R – радиусы вписанной и описанной
окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство
|
|
Сложность: 3+ Классы: 10,11
|
Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.
Длины сторон треугольника образуют арифметическую прогрессию.
Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 211]